
 
   

Analyzing Software Security against 

Complex Fault Models with Frama-C 

Value Analysis 

Johan Laurent1, Christophe Deleuze1, 

Vincent Beroulle1, Florian Pebay-Peyroula2 

 

 

  

  

 

1 

This work was funded thanks to the French national program 'programme 
d’Investissements d’Avenir, IRT Nanoelec' ANR-10-AIRT-05 

1 Univ. Grenoble Alpes, Grenoble INP, LCIS 
26000 Valence, France 
firstname.lastname@lcis.grenoble-inp.fr 

 

2 Univ. Grenoble Alpes, CEA, LETI 
38000 Grenoble, France 
firstname.lastname@cea.fr 
 



 
   

Summary 

I. Introduction 

II. Software fault injection with complex fault models 

a. Problem: Complexity of the models 

b. Solution: Code instrumentation 

III.  Security analysis with Frama-C Value Analysis 

IV.  Case study: VerifyPIN 

V.  Discussion 

a. Invariant properties 

b. Performances 

c. False positives 

VI.  Conclusion 

2 



 
   

I.  Introduction 

 There are multiple ways to study the security of software against 

fault injection. 

 

 Software methods are based on software fault models (defined by 

the Joint Interpretation Library for example [1])  

– Instruction skip [2] 

– Control-flow corruption (test inversion, …) [3][4] 

– Register/memory corruptions [5][6] 

 The methods are usually closely coupled with a particular fault 

model  

 

 Problem: there are hardware fault effects that are not modelled in 

typical software fault models [7] 
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 Some effects obtained in simulation in the LowRISC 

v0.2 processor [8]: 

– Replace an argument by the last computed value  

– Make an instruction “transient” 

– Set an architectural register to 0 or 1 during a branching 

instruction 

– Commit a speculated instruction 

– … 

 Lot of complexity in modelling these models 

 How to conduct efficient security analyses with these 

complex software fault models? 
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II. Software fault injection with 

complex fault models 

a.  Problem: Complexity of the models 

 

 How to take these complex software models into 

account ? 

 

 Constraints:  

– Models very different from one another 

– Need to model certain structures of the processor 

– Need to allow static analyses 
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 Solution:  

– From the executable, construct an instrumented C 

code to inject faults from complex software fault 

models 
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 Goal : reproduce at the software level the behavior of the hardware 
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[…] 

 0x06ac:    ADDI  x15 = x0 + 85 

[…] 

Instrumentation tool 

<model name=”FFM”> 

      <globals>       long fwd1 = 0,   fwd2 = 0;      </globals> 

      <gold_end>     fwd2 = fwd1;    fwd1 = res;      </gold_end> 

      <fault_ini>   if(injection_time==count) arg1=fwd2;  </fault_ini> 

</model> 

II. Software fault injection with 

complex fault models 

b.  Solution: Code instrumentation 



 
   

l06ac: // ADDI x15, x0, 85 

   arg1 = reg[0];  arg2 = 85;     // Decode 

 

  res = arg1 + arg2;     // Execute 

 

  reg[15]=res;  // Write-Back 

 Goal : reproduce at the software level the behavior of the hardware 
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[…] 

 0x06ac:    ADDI  x15 = x0 + 85 

[…] 

Instrumentation tool 
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<model name=”FFM”> 

      <globals>       long fwd1 = 0,   fwd2 = 0;      </globals> 
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 Goal : reproduce at the software level the behavior of the hardware 
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<model name=”FFM”> 

      <globals>       long fwd1 = 0,   fwd2 = 0;      </globals> 
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[…] 

Instrumentation tool 
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 Verification of the method (fault-free):  

– Goal: verify that the generated code behaves 

correctly 

– Use of RISC-V test vectors 

– Test of each instruction with different values and 

contexts, and comparison with pre-computed values   
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 Static analysis is used to prove the validity of security properties 

(for example, check the number of loop iterations) 
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 Value analysis is based on abstract interpretation  

 Abstract interpretation [9] is used to abstract the semantics of an 

application. Concretely, it computes results on intervals instead of 

concrete values 
– Instead of analyzing the program with individual values, we can analyze “simultaneously”  

many values. 

  

 

 

 It computes an over-approximation of the results (sound and 

incomplete)  
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  int a = {0..9} 

  a++;                     // a = {1..10} 

  int a = {0..9} 

  a++;                     // a = {1..10} 

  a = pow(a,2);     // a = {1..100}  

 

III. Security analysis with 

Frama-C Value Analysis 
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 VerifyPIN is a protected 4-digit PIN verification from the FISSC library [10], 

with the following countermeasures:  
– Hardened Booleans (0x55 for false and 0xAA for true)  

– Verification of the loop counter at the end of the loop  

– Duplicated Boolean tests.  

 

 Security property: If secret and user PIN are different, do not authenticate 

(the secret digits and user digits are abstracted (detailed later)) 

 

 Software Fault model HRFM (Hidden Register Fault Model): model obtained 

through RTL simulation 
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 There are 50 injection times possible:  

– For 45, the property is proven secure against all user inputs  

– The other 5 (which point to the same instruction) are potentially vulnerabilities 

 

 A manual analysis showed that: if the first digit of the secret 

PIN has a value 0, 1, 2 or 3, the fault can reduce the program 

to two loop iterations instead of four 

 The countermeasures are not effective in this case (in particular the one that 

checks the loop counter) 

 40% of the possible secret PIN are vulnerable  

 

 How easy would it be to find the vulnerability with classical 

tools (with concrete values) ? 

– The attack is successful if the first secret digit is 0-3 (40%) AND two loop 

iterations succeed (1%)  overall, only 0.4% to find the vulnerability with 

concrete values 

 

IV. Case study: VerifyPIN 



 
   

 The attack was simulated at RTL 

 

 It shows that:  

– Complex fault models lead to undetected successful attacks   

  Justifies the use of the instrumentation tool 

 

– Some attacks only happen under specific circumstances, 

difficult to find using random, concrete data   

  Justifies the use of static analysis 
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 How did we abstract the values in the case study ? 

– First idea: set all digits to {0..9}    (secret: XXXX ; user: XXXX)       

 with the property : “if the PIN are different, do not authenticate” 

– Problem: Value analysis does not keep track of relations between variables 

– Solution: manually set a secret digit to a concrete value, and the 

corresponding user digit to everything except that value  

 (secret: 0XXX ; user: ≠XXX) 

 with the property: “do not authenticate” 

 The properties have to be invariant regarding the abstracted 

states 

– In the example, we know that for all the abstracted states, the 

authentication has to fail 

– If we wanted to check the number of loop iterations, we could use 

secret:XXXX and user:XXXX, since the loop count should always be 4 
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 How efficient is the method to analyze a program, 

compared to testing every value individually ?  

– With the property: authentication ?   2.5x 

– With the property: loop count ?    10x 

– With 7-digit PIN instead of 4-digit: 2.5Mx and 10Mx 

 

 Performances are difficult to estimate 

– Depends on multiple factors: abstraction, property used, fault 

model, application, semantic unrolling, etc 

– Experiments on AES AddRoundKey: 2256 states at once; 

analysis can take minutes or hours depending on the settings 
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 False alarms mean that the property is not correct, but do not 

mean that there is a vulnerability 

 

 Value analysis computes an over-approximation of the states 

 false alarms 

– No counter-examples 

– Need further analysis (with other tools or manually) 

 

 The primary goal of the method is to prove the correctness of 

security properties, not to find vulnerabilities 

– In the AES experiments, on the 190 possible injection times, 141 were 

proven safe and 49 undecidable 

24 

V. Discussion 

c.  False positives 



 
   

VI.  Conclusion 

 Our tool can generate a C code that embeds complex software 

fault models 

 Frama-C Value analysis can then be used to verify security 

properties whatever the user inputs. 

 Although its performances are good compared to a simple 

execution with concrete values, it can be difficult to define 

correct properties  

 The analysis either proves a property (is correct), or does not 

(but that does not mean that there is a vulnerability). The 

remaining cases have to be studied more closely.  
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Thanks for your attention ! 

 

Questions ? 
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