

Analyzing Software Security against

Complex Fault Models with Frama-C

Value Analysis

Johan Laurent1, Christophe Deleuze1,

Vincent Beroulle1, Florian Pebay-Peyroula2

1

This work was funded thanks to the French national program 'programme
d’Investissements d’Avenir, IRT Nanoelec' ANR-10-AIRT-05

1 Univ. Grenoble Alpes, Grenoble INP, LCIS
26000 Valence, France
firstname.lastname@lcis.grenoble-inp.fr

2 Univ. Grenoble Alpes, CEA, LETI
38000 Grenoble, France
firstname.lastname@cea.fr

Summary

I. Introduction

II. Software fault injection with complex fault models

a. Problem: Complexity of the models

b. Solution: Code instrumentation

III. Security analysis with Frama-C Value Analysis

IV. Case study: VerifyPIN

V. Discussion

a. Invariant properties

b. Performances

c. False positives

VI. Conclusion

2

I. Introduction

 There are multiple ways to study the security of software against

fault injection.

 Software methods are based on software fault models (defined by

the Joint Interpretation Library for example [1])

– Instruction skip [2]

– Control-flow corruption (test inversion, …) [3][4]

– Register/memory corruptions [5][6]

 The methods are usually closely coupled with a particular fault

model

 Problem: there are hardware fault effects that are not modelled in

typical software fault models [7]

3

 Some effects obtained in simulation in the LowRISC

v0.2 processor [8]:

– Replace an argument by the last computed value

– Make an instruction “transient”

– Set an architectural register to 0 or 1 during a branching

instruction

– Commit a speculated instruction

– …

 Lot of complexity in modelling these models

 How to conduct efficient security analyses with these

complex software fault models?

4

I. Introduction

Summary

I. Introduction

II. Software fault injection with complex fault models

a. Problem: Complexity of the models

b. Solution: Code instrumentation

III. Security analysis with Frama-C Value Analysis

IV. Case study: VerifyPIN

V. Discussion

a. Invariant properties

b. Performances

c. False positives

VI. Conclusion

5

II. Software fault injection with

complex fault models

a. Problem: Complexity of the models

 How to take these complex software models into

account ?

 Constraints:

– Models very different from one another

– Need to model certain structures of the processor

– Need to allow static analyses

6

 Solution:

– From the executable, construct an instrumented C

code to inject faults from complex software fault

models

7

Fault Model
(XML)

Executable file

(binary)

Instrumentation tool

Meta-mutant
(instrumented C

code)

II. Software fault injection with

complex fault models

b. Solution: Code instrumentation

 Goal : reproduce at the software level the behavior of the hardware

8

[…]

 0x06ac: ADDI x15 = x0 + 85

[…]

Instrumentation tool

<model name=”FFM”>

 <globals> long fwd1 = 0, fwd2 = 0; </globals>

 <gold_end> fwd2 = fwd1; fwd1 = res; </gold_end>

 <fault_ini> if(injection_time==count) arg1=fwd2; </fault_ini>

</model>

II. Software fault injection with

complex fault models

b. Solution: Code instrumentation

l06ac: // ADDI x15, x0, 85

 arg1 = reg[0]; arg2 = 85; // Decode

 res = arg1 + arg2; // Execute

 reg[15]=res; // Write-Back

 Goal : reproduce at the software level the behavior of the hardware

9

[…]

 0x06ac: ADDI x15 = x0 + 85

[…]

Instrumentation tool

1

<model name=”FFM”>

 <globals> long fwd1 = 0, fwd2 = 0; </globals>

 <gold_end> fwd2 = fwd1; fwd1 = res; </gold_end>

 <fault_ini> if(injection_time==count) arg1=fwd2; </fault_ini>

</model>

II. Software fault injection with

complex fault models

b. Solution: Code instrumentation

 Goal : reproduce at the software level the behavior of the hardware

10

<model name=”FFM”>

 <globals> long fwd1 = 0, fwd2 = 0; </globals>

 <gold_end> fwd2 = fwd1; fwd1 = res; </gold_end>

 <fault_ini> if(injection_time==count) arg1=fwd2; </fault_ini>

</model>

[…]

 0x06ac: ADDI x15 = x0 + 85

[…]

Instrumentation tool

2 l06ac: // ADDI x15, x0, 85

 arg1 = reg[0]; arg2 = 85; // Decode

 res = arg1 + arg2; // Execute

 fwd2=fwd1; fwd1=res;

 reg[15]=res; // Write-Back

II. Software fault injection with

complex fault models

b. Solution: Code instrumentation

 Goal : reproduce at the software level the behavior of the hardware

11

<model name=”FFM”>

 <globals> long fwd1 = 0, fwd2 = 0; </globals>

 <gold_end> fwd2 = fwd1; fwd1 = res; </gold_end>

 <fault_ini> if(injection_time==count) arg1=fwd2; </fault_ini>

</model>

l06ac: // ADDI x15, x0, 85

 arg1 = reg[0]; arg2 = 85; // Decode

 if(injection_time==count) arg1=fwd2;

 res = arg1 + arg2; // Execute

 fwd2=fwd1; fwd1=res;

 reg[15]=res; // Write-Back

[…]

 0x06ac: ADDI x15 = x0 + 85

[…]

Instrumentation tool

3

II. Software fault injection with

complex fault models

b. Solution: Code instrumentation

 Verification of the method (fault-free):

– Goal: verify that the generated code behaves

correctly

– Use of RISC-V test vectors

– Test of each instruction with different values and

contexts, and comparison with pre-computed values

12

II. Software fault injection with

complex fault models

b. Solution: Code instrumentation

Summary

I. Introduction

II. Software fault injection with complex fault models

a. Problem: Complexity of the models

b. Solution: Code instrumentation

III. Security analysis with Frama-C Value Analysis

IV. Case study: VerifyPIN

V. Discussion

a. Invariant properties

b. Performances

c. False positives

VI. Conclusion

13

 Static analysis is used to prove the validity of security properties

(for example, check the number of loop iterations)

14

Fault Model
(XML)

Executable file

(binary)

Security
assertions
(text file)

Instrumentation
tool

Meta-mutant
(instrumented C

code)

Frama-C (EVA)

Potential
vulnerabilities

Injection time

III. Security analysis with

Frama-C Value Analysis

 Value analysis is based on abstract interpretation

 Abstract interpretation [9] is used to abstract the semantics of an

application. Concretely, it computes results on intervals instead of

concrete values
– Instead of analyzing the program with individual values, we can analyze “simultaneously”

many values.

 It computes an over-approximation of the results (sound and

incomplete)

15

 int a = {0..9}

 a++; // a = {1..10}

 int a = {0..9}

 a++; // a = {1..10}

 a = pow(a,2); // a = {1..100}

III. Security analysis with

Frama-C Value Analysis

Summary

I. Introduction

II. Software fault injection with complex fault models

a. Problem: Complexity of the models

b. Solution: Code instrumentation

III. Security analysis with Frama-C Value Analysis

IV. Case study: VerifyPIN

V. Discussion

a. Invariant properties

b. Performances

c. False positives

VI. Conclusion

16

 VerifyPIN is a protected 4-digit PIN verification from the FISSC library [10],

with the following countermeasures:
– Hardened Booleans (0x55 for false and 0xAA for true)

– Verification of the loop counter at the end of the loop

– Duplicated Boolean tests.

 Security property: If secret and user PIN are different, do not authenticate

(the secret digits and user digits are abstracted (detailed later))

 Software Fault model HRFM (Hidden Register Fault Model): model obtained

through RTL simulation

17

11 MSB of a previous value

62-bit 2-bit

Argument to the ALU HRFM

64-bit

IV. Case study: VerifyPIN

18

HRFM VerifyPIN

PIN different
↓

Auth failed

Instrumentation
tool

Meta-mutant
(instrumented C

code)

Frama-C (EVA)

Potential
vulnerabilities

Injection time

IV. Case study: VerifyPIN

19

 There are 50 injection times possible:

– For 45, the property is proven secure against all user inputs

– The other 5 (which point to the same instruction) are potentially vulnerabilities

 A manual analysis showed that: if the first digit of the secret

PIN has a value 0, 1, 2 or 3, the fault can reduce the program

to two loop iterations instead of four

 The countermeasures are not effective in this case (in particular the one that

checks the loop counter)

 40% of the possible secret PIN are vulnerable

 How easy would it be to find the vulnerability with classical

tools (with concrete values) ?

– The attack is successful if the first secret digit is 0-3 (40%) AND two loop

iterations succeed (1%)  overall, only 0.4% to find the vulnerability with

concrete values

IV. Case study: VerifyPIN

 The attack was simulated at RTL

 It shows that:

– Complex fault models lead to undetected successful attacks

  Justifies the use of the instrumentation tool

– Some attacks only happen under specific circumstances,

difficult to find using random, concrete data

  Justifies the use of static analysis

20

IV. Case study: VerifyPIN

Summary

I. Introduction

II. Software fault injection with complex fault models

a. Problem: Complexity of the models

b. Solution: Code instrumentation

III. Security analysis with Frama-C Value Analysis

IV. Case study: VerifyPIN

V. Discussion

a. Invariant properties

b. Performances

c. False positives

VI. Conclusion

21

 How did we abstract the values in the case study ?

– First idea: set all digits to {0..9} (secret: XXXX ; user: XXXX)

 with the property : “if the PIN are different, do not authenticate”

– Problem: Value analysis does not keep track of relations between variables

– Solution: manually set a secret digit to a concrete value, and the

corresponding user digit to everything except that value

 (secret: 0XXX ; user: ≠XXX)

 with the property: “do not authenticate”

 The properties have to be invariant regarding the abstracted

states

– In the example, we know that for all the abstracted states, the

authentication has to fail

– If we wanted to check the number of loop iterations, we could use

secret:XXXX and user:XXXX, since the loop count should always be 4

22

V. Discussion

a. Invariant properties

 How efficient is the method to analyze a program,

compared to testing every value individually ?

– With the property: authentication ? 2.5x

– With the property: loop count ? 10x

– With 7-digit PIN instead of 4-digit: 2.5Mx and 10Mx

 Performances are difficult to estimate

– Depends on multiple factors: abstraction, property used, fault

model, application, semantic unrolling, etc

– Experiments on AES AddRoundKey: 2256 states at once;

analysis can take minutes or hours depending on the settings

23

V. Discussion

b. Performances

 False alarms mean that the property is not correct, but do not

mean that there is a vulnerability

 Value analysis computes an over-approximation of the states

 false alarms

– No counter-examples

– Need further analysis (with other tools or manually)

 The primary goal of the method is to prove the correctness of

security properties, not to find vulnerabilities

– In the AES experiments, on the 190 possible injection times, 141 were

proven safe and 49 undecidable

24

V. Discussion

c. False positives

VI. Conclusion

 Our tool can generate a C code that embeds complex software

fault models

 Frama-C Value analysis can then be used to verify security

properties whatever the user inputs.

 Although its performances are good compared to a simple

execution with concrete values, it can be difficult to define

correct properties

 The analysis either proves a property (is correct), or does not

(but that does not mean that there is a vulnerability). The

remaining cases have to be studied more closely.

25

Thanks for your attention !

Questions ?

26

References

[1] Joint Interpretation Library, “Application of Attack Potential to Smartcards.” Jan-2013.

[2] N. Moro, K. Heydemann, E. Encrenaz, and B. Robisson, “Formal verification of a software countermeasure

against instruction skip attacks,” presented at the PROOFS 2013, 2013.

[3] M. L. Potet, L. Mounier, M. Puys, and L. Dureuil, “Lazart: A Symbolic Approach for Evaluation the

Robustness of Secured Codes against Control Flow Injections,” in Verification and Validation 2014 IEEE Seventh

International Conference on Software Testing, 2014, pp. 213–222.

[4] J. Vankeirsbilck, N. Penneman, H. Hallez, and J. Boydens, “Random Additive Signature Monitoring for

Control Flow Error Detection,” IEEE Trans. Reliab., vol. 66, no. 4, pp. 1178–1192, Dec. 2017.

[5] M. Christofi, B. Chetali, L. Goubin, and D. Vigilant, “Formal verification of an implementation of CRT-RSA

algorithm,” presented at the Security Proofs for Embedded Systems (PROOFS), 2012, pp. 28–48.

[6] A. Höller, A. Krieg, T. Rauter, J. Iber, and C. Kreiner, “QEMUBased Fault Injection for a System-Level

Analysis of Software Countermeasures Against Fault Attacks,” in 2015 Euromicro Conference on Digital System

Design, 2015, pp. 530–533.

[7] H. Cho, S. Mirkhani, C. Y. Cher, J. A. Abraham, and S. Mitra, “Quantitative evaluation of soft error injection

techniques for robust system design,” in 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC),

2013, pp. 1–10.

[8] J. Laurent, V. Beroulle, C. Deleuze, F. Pebay-Peyroula, and A. Papadimitriou, “On the importance of

Analysing Microarchitecture for Accurate Software Fault Models,” in 2018 21st Euromicro Conference on Digital

System Design (DSD), 2018, pp. 561–564.

[9] P. Cousot and R. Cousot, “Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by

Construction or Approximation of Fixpoints,” in Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages, New York, NY, USA, 1977, pp. 238–252.

[10] L. Dureuil, G. Petiot, M.-L. Potet, T.-H. Le, A. Crohen, and P. de Choudens, “FISSC: A Fault Injection and

Simulation Secure Collection,” 2016, pp. 3–11.

27

